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Abstract —Percolation theory was applied to determine the eritical surface arca density for a random
distribution of circular voids in a two-dimensional clastic medium. Additionally, the percolation
theory provides the scaling laws characterizing nonlinear dependence of clastic moduli on Lacumty
in the neighborhood of eritical state. 1t is also argued that the percolation theory complements the
traditional effective continua models providing i measure of their accuracy.

INTRODUCTION

An important class of inelastic deformation processes, typical of metals, metallic alloys and
some ceramics, is characterized by extensive micro-cavitation over a large fraction of the
specimen volume. During the latter phase of their growth cavities may coalesce, forming
clusters large enough to compromise the integrity of the specimen on the macro-scale. The
rapid and highly localized (non-uniform) process of void coalescence leading to ductile
rupture has been studied in the past by many authors (sce, for example, Cadek, 1987
Riedel, 1987 Tvergaard, 1987 Becker er al., 1988).

The fracture mode of cavitating materials depends on many factors, among which the
initial porosity, temperature and stress levels are commonly considered to be dominant. At
clevated temperatures and for protracted load durations strain to rupture dramatically
decreases. This loss of ductility is directly attributable to the increasing porosity caused by
the creep cavitation. The coulescing cavities eventually form a large void cluster leading to
fractures characterized by dimpled, intergranular surfaces.

The exact micro-mechanisms causing cavitation have been reviewed in detail by Riedel
(1987) and others and are considered beyond the scope of this study. The objective of this
paper is restricted to the determination of the elastic moduli of an otherwise homogencous
material containing a random distribution of voids. Even more specifically, the attention is
focused on the determination of critical porosity signalling the onset of macro-failure.

The problem of determination of compliance of a solid weakened by an ensemble of
micro-defects attracted considerable attention in the last decade. Most of the models were
developed within the framework of the first-order effective continua (mean ficld) theories
which are, in gencral, applicable to low-to-moderitte micro-defect densitics.

[n order to predict the onset of failure it is important to develop analytical estimates
of the critical lacunity at which the macro-stiffness of the material vanishes. This task may
be addressed within the framework of the percolation theory. The objective of the present
paper is to explore the applicability of the percolation theory to the problem of deter-
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mination of the compliance of an elastic plate containing a random distribution of circular
voids for the entire range of densities.

EFFECTIVE CONTINUA MODELS

Analytical models relating the macro-response of a specimen to the micro-structure of
a material are commonly labeled as micro-mechanical. The micro-to-macro mapping
involves introduction of the representative volume element (RVE) defined as a statistically
representative part of the volume (Hill, 1967 ; Nemat-Nusser and Hori, 1990) mapping on
a material point of the effective continuum. Thus, by definition. the number .V of micro-
defects within the RVE must be large. The exact determination of the stress and strain fields
within the RVE weakened by ¥ interacting micro-defects is a nontrivial problem since it
involves solution of N coupled integral equations (Kunin, 1983). The kernels of these
integrals are defined via Green's displacement tensor which is available only for simple
materials and simple defect geometries.

Thus. for a spatially homogeneous and random field of defects the “exact™ solution is
not a feasible alternative. A set of the so-called effective continua models was, therefore,
suggested in order to provide approximate solutions of the problem. Most of these models
belong to the class of the first-order theories based on the premise that the mean values of
the stress, strain and damage ficlds sullice for the deternunation of the response. In effect,
these models assume that: (a) the external fickds of cach defeet weakly depend on the exact
position of adjacent defects and inhomogeneities, and (b) the external stress ficld of cach
defect (inhomogencity) is equal to the far-ficld (macro) stress. As a result, cach defect can be
analyzed as an isolated inclusion placed in the center of the RVE containing homogenized,
ctfective material. The parameters of the effective material are typically determined from
cnergy considerations,

The simplest (Taylor) model, valid only for very ditute micro-defect concentrations, is
based on the assumption that cach defect is surrounded by the original (virgin) material
completely ignoring the existence of other micro-defects. The classical self-consistent
model was for the problem we are considering used tirst by Vavakin and Salganik (1975)
and Budiansky and O’Conncell (1976), and subsequently applied by Horn and Nemat-
Nasser (1983, 1986), Sumarac and Krajeinovic (1987) and Krajeinovic and Sumarac (1989).
An interesting improvement (known as double-embedding or three-phase model) of the
scelf-consistent model was suggested by Christensen and Lo (1979). The so-called difterential
method was applied to this class of problems by Vavakin and Salganik (1973), Cleary of
al. (1980) and Hashin (1988).

In the case of homogencous macro-stresses and macro-strains, isotropic and lincar
elastic matrix and defects of simple and regular geometries, the above-mentioned models
require acceptable levels of numerical effort needed to determine elastic parameters as a
function of the microcrack density. Taylor’s model, in fact. often leads to closed-form,
analytical solutions. However, as expected, different methods lead to different estimates for
clastic moduli. The differences are especially significant for larger micro-defect densities
(see Sumarac and Krajcinovic, 1987 and Nemat-Nasser and Hori, 1990). Morcover, it was
shown that these methods lead to different limits at inclusion saturations (Christensen,
1990). Thus, despite significant progress in modeling, a considerable doubt persists with
regard to the applicability of these methods for larger micro-defect concentrations. More-
over, faced with a host of different models it becomes diflicult to select the most appropriate
method for the considered casc.

Eliminating from consideration the distance between the defects. the first-order effective
continua (mean-ficld) modecls are rendered local and, therefore. unsuitable for analyses of
deformation processes dominated by direct defect interaction (see. for example, Green,
1940, or Kouris and Tsuchida, in press). In the case when the distances separating the
micro-defects are small they have dominant influence on the stress field (fluctuations trom
the mean value) and must be therefore included in computations. The response is. therefore.
in the case of many defects dominated by the highest statistical momenta of the micro-
defect distribution (Duxbury, 1990). Considerations of the direct micro-crack interaction
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(Kachanov, 1987 ; Kachanov and Laures. 1989 Ju and Chen. unpublished) lead to com-
putationally intensive models despite an array of simplifying assumptions introduced to
increase the tractability. In most cases application of these models requires special software.
Nevertheless, they provide valuable data regarding the prevailing trends at growing micro-
crack densities. Rigorous higher-order theories (Kanaun, 1977) become totally unman-
ageable in applications.

The state-of-art in development and application of mean-field models was aptly sum-
marized in Cleary er al. (1980) who stated that “the problem of multiple adjacent inclusions
appears to be prohibitively complex™ especially since it is not clear “*how much information
we need and whether or not all effects are really important™. Even the second-order theories,
such as one suggested by Chatterjee and Mal (1978), “take no account of possible clustering
effects that might develop™. With considerable foresight Cleary et al. (1980) conclude that
“until some tractable probabilistic description has been achieved. it seems that a single
isolated site model of heterogeneities will have to suflice™.

For the already stated reasons one of the most interesting segments of the macro-
response is one just preceding the transition from a state characterized by a diffuse field of
small isolated defects to a state dominated by a single defect cluster spanning not one but
many RVEs and possibly the entire specimen. In the proximity of the critical regime, defined
as a state of vanishing stiffness, the local stress fluctuations vastly exceed the macro-stress
levels.

PERCOLATION THEORY

Applications ol conventional continuum models for the determination of macro-
parameters characterizing transport processes through strongly disordered solids containing
a large density of micro-inhomogencitics (inclusions) are typically limited to:

() low-to-moderate concentrations of inclusions (defects, pores, sccond-phase
particles, micro-cracks, ete.),

(b) clastic and isotropic matrices,

(¢) stimple inclusion geometries (shapes), and/or in some cases

(d) regular, en echelon, spatial distributions of inclusions.

Hence, to retain the computational efticiency, the micro-structural disorder is in some
general sense approximated by an “effective™ order. While this idea, indeed, provides
valuable insights and results for a limited range of inclusion densities, it can be easily shown
that the disorder governs the response within the regime preceding the macro-failure. In
fact, it has been shown (Bazant, 1989) that a self-similar evolution pattern of an initially
ordered ensemble of defects represents a thermodynamically unstable path. In other words,
growing disorder of micro-defects is energetically a preferred alternative. An identical
conclusion was reached by Nemat-Nasser er ¢f. (1982) who stated that “in reality, inclusions
or voids are essentially randomly distributed and may, in fact, form clusters and other
anomalous structures™.

As already impliced, the mean-ficld-based estimates of elastic moduli, derived from the
first-order effective continua theorics, are presumed to be valid only for the low-to-moderate
inclusion volume (arca) densities /' < /. However, in absence of requisite data for large
inclusion densities /2 f,¢ it is not possible to ascertain :

(a) cither the upper limit f,; of the range of validity of mean ficld models, or
(b) the relative accuracies of various competing and often contradicting mcan field
models available in the literature.

A very suitable framework for the analyses of critical phenomena in disordered systems
is provided by one of the newly developing branches of statistical physics known as
percolation theory. A system is said to percolate if it undergoces a “transition from a state
of local connectedness to one in which the connections extend indefinitely™ (Essam, 1980).
The principal objective of percolation studies is to examine and formulate universal laws
governing the behavior of the system near the transition point.
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From the current viewpoint, percolation threshold will be defined as a second-order
phase transition from a state defined by a diffuse, random distribution of isolated small
defects (missing bonds) to a state dominated by a large (spanning) detect cluster representing
loss of connectivity over a long range, i.e. spanning a large part of the specimen. The
objective can, therefore. be defined as an inquiry into the behavior of a solid in the vicinity
of the critical micro-defect concentration. Even more specifically. the emphasis will be
placed on the functional dependence existing between the elastic (order) parameters of the
material and the void concentration near the onset of the percolation threshold.

The early percolation models were primarily of lattice type. A lattice model approxi-
mates a solid by a topologically regular network of sites (nodes) interconnected by bonds.
The disorder is introduced superimposing on the regular node (site) geometry a random
bimodal function assigning zero strength to some of the links (bonds). Once a given
initial random damage is introduced the macro-response is determined using conventional
deterministic methods for analyses of articulated structures (trusses or frames). The analyses
are repeated as the system is further diluted by removal of links until macro-faiture is
reached.

The independent variable in these analyses is the fraction (density) of ruptured (or cut)
bonds p. As a lattice is gradually diluted the fraction of extant bonds increases from p = 0
(virgin, undamaged lattices) to p = p. {percolation threshold) and possibly to p > p. in
strain-controlled experiments. At the outset p = 0 the defects (ruptured links) are small and
well distributed over the entire fattice. As the number of ruptured links increases some of
the detects grow and coalesce with adjacent defects forming defect clusters of size L(p)
having trregular shapes. Cotncidentally, the elastic modulus £(p) (or more accurately the
macro-stitfness of the lattice) decreases. At the pereolation threshold p = p. an infinite
cluster of ruptured bonds (L — 20} emerges in an infinite lattice. Simultancously, the elastic
modulus (1.e. macro-stiffness) on the macro (lattice) scale vanishes.

The macro-response features two distinetly different regimes. Away from the per-
colation threshold the functional dependence of transport propertics on p emphasizes
gradual changes in concert with the basic tenets of the mean-ficld theories. In the close
vicinity of the critical phenomena the transport propertics change very stowly with increas-
ing lacunity and are deseribed by a power of the proximity parameter (p,—p)”.

The percolation threshold p. is dependent only on the selected lattice, equilibrium
propertics near the critical point and the dimensionality « of the problem. In other words,
the onset of critical phenomena depends on the details of the micro-structure of the solid.
The percolation exponent g defines the behavior of the system in the vicinity of the
percolation threshold and depends on the dimensionality « but not on the details of the
lattice structure. This fuct can be readily appreciated from the argument offered by Aharony
(1986). Consider the evolution of the correlation (connectivity or coherence) length &
defined as a root mean square distance between pairs of bonds (sites) belonging to the
same defect cluster. At the percolation threshold & — o¢ and the only scale length existing
heretofore is eliminated. The system becomes qualitatively self-similar on all scales sug-
gesting fractal nature of the phenomenon. Conscquently, the details of the lattice become
irrelevant at the pereolation threshold giving rise to the universality of the scaling law. This
fact. naturally, gives credence and significance to the simple lattice model which can,
otherwise, be prematurely dismissed in comparison with more sophisticated and claborated
discretization schemes. In summary, percolation thresholds and exponents defining scaling
laws are fundamental constants robust to details of microstructural texture and attendant
interactions.

The heterogencity of the material, disorder level and, thus, the range of the applicability
of different analytical models directly depend on the relative magnitude of the specimen
size L. size of the RVE [« L and the correlation fength . A material is statistically
homogencous, rendering averaging over the RVE useful, if / » & (Hansen, 1990). However,
at the percolation threshold & » /, since ¢ =~ L. Consequently, within this range the RVE
itself ceases to be statistically representative of the material.

It is important to emphasize that the values for the percolation threshold and per-
colation exponents pertain to infinite lattices, i.e. very large specimens. The corresponding
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values for finite lattices can be computed using finite size scaling based on the premise that
the correlation length ¢ and the discretization distance separating nodes of the lattice are
the only two length scales characterizing the response (Hansen et al.. 1989).

A higher order of stochastic geometry is considered within the framework of continuum
percolation. The methods of continuum percolation are applied to investigate transport
processes in topologically irregular media containing objects (inclusions. defects) of random
shapes. sizes. orientations and locations. These objects may be impermeable (such as rigid
inclusions) or permeable (intersecting cracks or overlapping voids).

In summary. it is apparent that the first-order (mean-field) micro-mechanical models
and percolation models complement each other in terms of their application ranges. The
first class of models is very useful in analyses of the response in the pre-critical (hardening)
regime while the second one becomes very efficient in the proximity of the critical phenom-
ena. Percolation models fully account for the randomness characterizing the problem which
becomes the dominant feature as the defect concentration approaches critical value.

ELASTIC PLATE CONTAINING CIRCULAR CAVITIES

The objective of this study is focused on determination of the macro-stiffness for a
plate made of perfectly elastic, isotropic and homogeneous material weakened by a large
number of randomly distributed circular voids being small in comparison with the specimen
size.

(a) Mean-field estimates for effective elastic parameters

The mean-ficld (first-order effective continuum) estimates for the elastic moduli of a
perforated plate have been suggested by a host of authors in the past. In view of the
extensive literature on this problem anything but a direct listing of the results and their
sources scems redundant. The expressions for the clastic (Young's) modulus and the
Poisson’s ratio for some of the mean-field models may be readily derived from the formulas
in Vavakin and Salganik (1975) and Nemat-Nasser and Hort (1990):

EPY/E, = 1/(3f+1) v, = (L+fvs DI(1+3/) (H
EX|E,=1=3f Vv, = (1=3)+/v, ()
EYIE, =exp(=3/) vS/v,=exp(=3/f) (3
EMBIE, =exp (=3/) vM%v, = [1=(v) 'Texp (=3)+(v,) ! 4)

where the superscripts DC, SC, DS and MDS stand for the dilute concentration, self-
consistent model, differential scheme, and modified differential scheme, respectively. Sub-
script o™ indicates reference to the undamaged (virgin) plate. The formulas (1)-(4) are
derived for the case of plane stress assuming that the stress on the boundary of RVE is
prescribed. Additionally,

= Z (Avoia/A) = aN{a?) (5)

is the void surface area density, with N being the number of cavities per unit area, and A,
the surface area of a single void of radius a. The angular brackets denote average values.

A solution for a periodic array of circular voids allowing for their intcraction (subject
to a polynomial approximation for eigenstrains) but stopping short of cluster formation
was derived by Nemat-Nasser er al. (1982).

(b) Percolation theory estimates of effective elastic paramicters

In a general case of randomly distributed voids it is necessary to make a distinction
between two different classes of problems. In the first case the voids may be considered
“rigid”; i.e. two adjacent voids may only touch without intersecting or permcating each
other. In the second case the cavities may overlap forming clusters of complex geometries
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with serrated surfaces. Both alternatives were observed experimentally and are. therefore.
deserving of attention.

Consider first the case of impermeable cavities assuming tor the moment that their
centers are located on a regular lattice. The critical void surface area f. can be determined
directly using either a site or a bond percolation model

fo=pit=p: (6)

where ¢ and - are the packing (filling) factor and the coordination or connectivity number
(number of closest nodes), respectively. Also p: and pt denote the critical fraction of sites
and/or bonds occupied by voids at the percolation threshold at which the elastic modulus
E vanishes. [t was shown by Scher and Zallen (1970) that /. is a dimensional invariant
found to be equal to 0.45+0.03. Table | (Appendix). distilled from a similar table in Zallen
(1983). provides data necessary for the requisite computations. Observing that the product
{per) (last column in Table 1) 1s invariant of lattice geometry, the first of the two equalities
in (6), in conjunction with (5), can be rewritten (Bulberg, 1987) in the form

fo=(NA ) x 045 (7)

The critical lacumity £, in (7) s invariant to variations in ¥ and A, .

Itis interesting that the clastic modulus £ will, in case of nonintersecting (impermeable)
voids, reduce to zero value when fewer than half of the overall surface is occupied by voids
(7). To put this result into proper perspective constder a conventional cell model in which
voids occupy nodes of a triangular lattice. A two-dimensional continuum is, in the spirit of
the cell model, divided into dentical hexagonal cells covering the entire plate. The faiture
according to the cell model will take place at full packing, i.e. at the site occupancy of p, = 1
overestimating the critical lacunity by a factor of two. The same conclusion is valid in the
case of pertodic void arrays.

The situation is somewhat more complicated i the case of intersecting (permeable or
soft) voids. To address this problem it is first necessary to determine the probability of
overlapping of neighboring cireles. Percolation threshold will then coincide with the emerg-
ence of an infinite cluster (chain) of overtapping voids. The centers of these voids need not
occupy nodes of a regular lattice. Two voids of identical radius o will intersect if the distance
separating their centers does not exceed value 20, As shown in Shante and Kirkpatrick
(1971) the probability that a point, selected at random, is not within once of the circular
voids is equal to exp ( —n), where nis the mean number of circles within distance « from
that point. At a critical concentration ot circles = zp2 4 (Shante and Kirkpatrick, 1971).
Thus, the critical fractional surface arca of voids for a two-dimensional case is {Balberg,
1987) :

fo=1l=cxp(—B.3) (8)

where B, = lim (pl2) (as z — ) is the average critical number of bonds per site. The
parameter B is the mean number of circle centers within a given circle, i.e. a measure of the
cluster connectivity,

The critical connectivity 8 = B, cun be estimated considering the site problem on
regular lattices assuming that cach site is connected (bonded) to sizes of all coordination
groups. For example. in a square lattice (Table 2, Appendix) if the site is connected only
to the sites of the first coordination group (nearest neighbors) =, = 4 and =, p}, = 2.36. If
the same site is connected to the sites of tirst two coordination groups then =, = 8 and
z.pts = 3.28. If the same site is connected to all sites of first three coordination groups
Zupsy = 3.50 (Efros, 1986). The increment becomes smaller with addition of each new
coordination group (i.c. the attractive force between sites decays with distance) and the
results saturate for = — » at B. ~ 4.55 for all two-dimensional lattices. Thus, the critical
fractional surface area of voids is. from (8). f. =~ 0.68 (Shante and Kirkpatrick, 1971 ; Pike
and Seager, 1974).
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Fig. 1. Excluded area (solid line) for a circular cavity (a).

A geometrical representation of the parameter B, was provided by Balberg er al. (1984)
in the form

B. = N{Aeo 9

where (A..) is the mean excluded arca of a cavity and N, the critical number of cavities.
The excluded area of an object (a) is enveloped by the locus of points formed by the centers
of all surrounding geometrically similar objects (b) which just touch the object (a) without
intersecting it (Fig. D). In other words, if a center of an adjacent object (b) is within the
excluded area of the object (a) two objects penctrate (permeate or intersect) cach other.
Thus. B, can also be interpreted as a mean number of intersections of objects (Pike and
Scager, 1974 ; Guyon ¢t al.. 1987).

The universality of the parameter B, and the critical fractional arca f; (8) was first
demonstrated by Pike and Seager (1974) by an extensive program of numerical simulations.
The value of f; = 0.68 was indced found to be valid for circular voids of uniform and
nonuniform radii and even for voids in the shape of squares. Once the value of £, is known,
the excluded area can be found in the case of circular voids (Fig. 1) as

(AL =~ n(2a) =44, (10)

where a is the radius of the void having surface area A,,;.

Thus, the expressions (8). (9) and (10) with /. = 0.68 lead to N A4,,4 = 1.14 which, by a
significant margin, exceeds the value /. = 0.45 computed for the case of the non-intersecting
cavities (7). Naturally, the critical surface arca of circles is larger when the voids overlap.
In other words. more perforations must be punched out if they are allowed to overlap.
Having two different percolation thresholds is by no means contradictory. These two
numbers correspond to two different processes: one characterized by separate circular
cavities and other in which cavities intersect before the percolation takes place. The choice
of f, will depend on the considered material and circumstances.

The experimental data for the percolation threshold were provided by Benguigui
(19864, b) who mcasured the critical fraction of the removed arca to be:

J. = 0.47 for circular holes punched on a square lattice, and

J: = 0.64 for randomly placed circular holes,

using a 0.2 mm thick copper sheet specimen subjected to simple shear. The critical value of
the parameter f = f. was determined weighing the metal pieces removed by punching. These
experimental measurements are in satisfactory agreement with the above-cited numerical
simulations performed by Pike and Seager (1974).

The determination of the scaling law for the elastic parameters near the percolation
limit (f — /) involves considerations of the bond-bending and central forces model for the
lattice, or the node-link-blob (swiss cheese) for the continuum case. These analyses (Feng
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Fig. 2. Effective clastic modulus for a plate with random circular voids,

et al, 19847 Halperin ¢ ol 1985 Sornette, 1987) indicate that the tangential elastic
modulus scales as

L~ (f.=N". (I

In two dimensions the critical exponent 7" was found to be 77 = 3.340.5 for the lattice
(Fengeral  1984) and T = T, + 32 for the continuum percolation (Halperin et al.. 1985).
indicating very slow change of the clastic modulus (macro-stiffness) near the critical point.
[tis perhaps reasonable to underline the tact that the clastic modulus in the above expression
actually represents the stiftness of the specimen. Since the averages become meaningless in
the absence of the RVE the macro-properties at this point relate to the entire specimen.

(¢) Nuwmerical results and compurisont of madels

The results of computations based on the mean-fiecld models (expressions | to §) are
plotted in Fig. 2. The experimental data by Vavakin and Salganik (1975) and Benguigui
(1986b) are shown in Fig. 2. Since the analytical and experimental data must be compared,
it scems important to discuss the respective experimental procedures. Vavakin and Salganik
(1975) used 14 x 8 x 0.1 cm vacuum sheet rubber specimen, while Benguigui (1984, 19864,
b) tested 20 x 21 x 0.02 metallic sheet plate. In both cases holes 1 cm in diameter were
punched randomly with centers on a square grid. Benguigui (1986b) used @ much more
sophisticated device allowing measurements very close to the pereolation limit (f = 0.95/.).
Vavakin and Salganik (1975) managed as faras /= 0.78 /.. It is important to note that the
Benguigui (1984, (986a) data had to be adjusted, as suggested by Sen and Thorpe (1985).
to avoid confusion between the void arca and void number fraction. Benguigui (1986b)
reports the value of 77 = 3.4 £0.5 for the critical exponent in (11) which matches the
theoretical predictions ol Feng er al. (1984) with a remarkable accuracy.

To facilitate the task of comparing the disparate data displayed in Fig. 2. it must be
remembered that the objective of this paper is limited to the evaluation of the macro-moduli
for a plate with random distribution of circular voids of identical size. Thus, the clastic
modulus (i.c. the macro-stiffness of the specimen) rrst vanish at the percolation threshold
f = f.. Note that critical porosity /. does not depend on the void shape. The presented
evidence scems to favor the SCM estimate connected to the percolation threshold by a
cross-over (switching or meshing) curve. The difficult problem of the determination of the
cross-over curve will be addressed in a future study.

This conclusion is further supported by the refated (but not identical) tests by Sieradzki
and Li (1986) who used a 2 mm thick aluminum plate with predrilled holes centered on a
triangular lattice. Their specimen was subsequently weakened. cutting ligaments between
the holes and measuring the elastic modulus after each cut (a bond percolation problem).
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The conclusion that the elastic modulus behavior away from the percolation threshold is
“in good agreement with effective medium theories™ is understated in the sense that the
deviation of the measured data from the mean-field linear relationship is imperceptible
within the range of 1.0 > E/E, > 0.1. Similar results were obtained by Feng and Sen (1984)
and Allain ez al. (1983).

SUMMARY AND CONCLUSIONS

The present study advocates the application of the percolation theory in analyses of
the behavior of solids in the vicinity of the critical state defined herein as the void area
density at the vanishing tangential elastic modulus. The universality of the system behavior
at the critical point allows for the determination of the scaling laws for the elastic moduli
for large void area densities. These results nicely complement the analyses based on tra-
ditional mean-field (effective continua) models and provide. coincidentally, a measure of
accuracy of these models for larger void densities.

The results and conclusions of this study are bound to stir some controversy. The
reputation of the SCM has recently been on the decline. Yet. as this and other studies
(Krajcinovic and Basista, 1991) demonstrate. the SCM estimates seem to be sufficiently
accurate in the case of random micro-structures over a surprisingly large range of defect
densities.

Despite the apparent ease with which the percolation theory can be applied to this,
previously unresolved, problem of solid mechanics, a4 word of caution should be added in
the summary. Most of the currently available data pertain to two-dimensional systems. The
direet interaction between inhomogeneities is emphasized by decreasing dimensionality,
Thus, the conclusions based on this study are not directly transferable to three-dimensional
systems. Furthermore, the percolation thresholds with regard to conductivity and rigidity
coincide in two dimensions. In three dimensions a cluster will first traverse a specimen
(creating a bore-hole) before it transects it into two or more fragments. Thus, an extensive
computational cffort must be initiated before statistically signiticant data for the critical
void volume density rendering £ = 0 becomes available. 1tis, indeed, rather difficult to say
whether critical porosity exists at all. Deptuck er al. (1985) report percolation thresholds
at porosities of 94% in sintered silver-powder beams. They were able to produce beams
with porosity of up to 93% which disintegrated after a 1% increase in porosity.
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APPENDIX

Table Al. Bond and site percolation thresholds for two-dimensional lattices

Lattice A o : v =p? epl
Triangular 0.347 0.5 6 0.907 208 045
Square 0.5 0.593 4 0.785 2.00 0.47
Honeycomb 0.653 0.698 4 0.605 1.96 042

Table A2. Site percolation thresholds for first three coor-
dinate groups

Lattice : e xpe
Triangular | 6 0.5 .00
Triangular 1., 2 12 0.295 354
Triangular |, 2,3 I8 0.225 408
Square { 4 0.593 236
Square [, 2 8 0410 328

Square 1, 2,3 12 0292 350
Honeycomb | 3 0.698 210
Honeycomb 1, 2, 3 12 0,292 350




